skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ganas, Abbie_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Herein, the role that point defects have played over the last two decades in realizing solid‐state laser refrigeration is discussed. A brief introduction to the field of solid‐state laser refrigeration is given with an emphasis on the fundamental physical phenomena and quantized electronic transitions that have made solid‐state laser‐cooling possible. Lanthanide‐based point defects, such as trivalent ytterbium ions (Yb3+), have played a central role in the first demonstrations and subsequent development of advanced materials for solid‐state laser refrigeration. Significant discussion is devoted to the quantum mechanical description of optical transitions in lanthanide ions, and their influence on laser cooling. Transition‐metal point defects have been shown to generate substantial background absorption in ceramic materials, decreasing the overall efficiency of a particular laser refrigeration material. Other potential color centers based on fluoride vacancies with multiple potential charge states are also considered. In conclusion, novel materials for solid‐state laser refrigeration, including color centers in diamond that have recently been proposed to realize the solid‐state laser refrigeration of semiconducting materials, are discussed. 
    more » « less